Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 3, 2025
-
In this paper, we present a GPU algorithm for finite element hyperelastic simulation. We show that the interior-point method, known to be effective for robust collision resolution, can be coupled with non-Newton procedures and be massively sped up on the GPU. Newton's method has been widely chosen for the interior-point family, which fully solves a linear system at each step. After that, the active set associated with collision/contact constraints is updated. Mimicking this routine using a non-Newton optimization (like gradient descent or ADMM) unfortunately does not deliver expected accelerations. This is because the barrier functions employed in an interior-point method need to be updated at every iteration to strictly confine the search to the feasible region. The associated cost (e.g., per-iteration CCD) quickly overweights the benefit brought by the GPU, and a new parallelism modality is needed. Our algorithm is inspired by the domain decomposition method and designed to move interior-point-related computations to local domains as much as possible. We minimize the size of each domain (i.e., a stencil) by restricting it to a single element, so as to fully exploit the capacity of modern GPUs. The stencil-level results are integrated into a global update using a novel hybrid sweep scheme. Our algorithm is locally second-order offering better convergence. It enables simulation acceleration of up to two orders over its CPU counterpart. We demonstrate the scalability, robustness, efficiency, and quality of our algorithm in a variety of simulation scenarios with complex and detailed collision geometries.more » « less
-
Simulating stiff materials in applications where deformations are either not significant or else can safely be ignored is a fundamental task across fields. Rigid body modeling has thus long remained a critical tool and is, by far, the most popular simulation strategy currently employed for modeling stiff solids. At the same time, rigid body methods continue to pose a number of well known challenges and trade-offs including intersections, instabilities, inaccuracies, and/or slow performances that grow with contact-problem complexity. In this paper we revisit the stiff body problem and present ABD, a simple and highly effective affine body dynamics framework, which significantly improves state-of-the-art for simulating stiff-body dynamics. We trace the challenges in rigid-body methods to the necessity of linearizing piecewise-rigid trajectories and subsequent constraints. ABD instead relaxes the unnecessary (and unrealistic) constraint that each body's motion be exactly rigid with a stiff orthogonality potential, while preserving the rigid body model's key feature of a small coordinate representation. In doing so ABD replaces piecewise linearization with piecewise linear trajectories. This, in turn, combines the best of both worlds: compact coordinates ensure small, sparse system solves, while piecewise-linear trajectories enable efficient and accurate constraint (contact and joint) evaluations. Beginning with this simple foundation, ABD preserves all guarantees of the underlying IPC model we build it upon, e.g., solution convergence, guaranteed non-intersection, and accurate frictional contact. Over a wide range and scale of simulation problems we demonstrate that ABD brings orders of magnitude performance gains (two- to three-orders on the CPU and an order more when utilizing the GPU, obtaining 10, 000× speedups) over prior IPC-based methods, while maintaining simulation quality and nonintersection of trajectories. At the same time ABD has comparable or faster timings when compared to state-of-the-art rigid body libraries optimized for performance without guarantees, and successfully and efficiently solves challenging simulation problems where both classes of prior rigid body simulation methods fail altogether.more » « less
-
We present a simulation framework for multibody dynamics via a universal variational integration. Our method naturally supports mixed rigid-deformables and mixed codimensional geometries, while providing guaranteed numerical convergence and accurate resolution of contact, friction, and a wide range of articulation constraints. We unify (1) the treatment of simulation degrees of freedom for rigid and soft bodies by formulating them both in terms of Lagrangian nodal displacements, (2) the handling of general linear equality joint constraints through an efficient change-of-variable strategy, (3) the enforcement of nonlinear articulation constraints based on novel distance potential energies, (4) the resolution of frictional contact between mixed dimensions and bodies with a variational Incremental Potential Contact formulation, and (5) the modeling of generalized restitution through semi-implicit Rayleigh damping. We conduct extensive unit tests and benchmark studies to demonstrate the efficacy of our method.more » « less
-
We present a GPU algorithm for deformable simulation. Our method offers good computational efficiency and penetration-free guarantee at the same time, which are not common with existing techniques. The main idea is an algorithmic integration of projective dynamics (PD) and incremental potential contact (IPC). PD is a position-based simulation framework, favored for its robust convergence and convenient implementation. We show that PD can be employed to handle the variational optimization with the interior point method e.g., IPC. While conceptually straightforward, this requires a dedicated rework over the collision resolution and the iteration modality to avoid incorrect collision projection with improved numerical convergence. IPC exploits a barrier-based formulation, which yields an infinitely large penalty when the constraint is on the verge of being violated. This mechanism guarantees intersection-free trajectories of deformable bodies during the simulation, as long as they are apart at the rest configuration. On the downside, IPC brings a large amount of nonlinearity to the system, making PD slower to converge. To mitigate this issue, we propose a novel GPU algorithm named A-Jacobi for faster linear solve at the global step of PD. A-Jacobi is based on Jacobi iteration, but it better harvests the computation capacity on modern GPUs by lumping several Jacobi steps into a single iteration. In addition, we also re-design the CCD root finding procedure by using a new minimum-gradient Newton algorithm. Those saved time budgets allow more iterations to accommodate stiff IPC barriers so that the result is both realistic and collision-free. Putting together, our algorithm simulates complicated models of both solids and shells on the GPU at an interactive rate or even in real time.more » « less
An official website of the United States government
